For selecting genes for validation were both their presumed relevance in the DNA damage response

Previous indications of regulation by an HDAC inhibitor, and additionally, in order to find ‘tumor-specific’ markers, omitting genes that typically might be associated with leukocyte biology. Four of the selected genes were induced by vorinostat in the study patients’ PBMC but did not show a similar Bortezomib response in the experimental tumor models. BARD1 encodes a nuclear factor with tumor suppressor activity, the stress response effectors encoded by GADD45B and DDIT3 are implicated in cell cycle arrest, DNA repair, and apoptosis, and MSH6 encodes a DNA mismatch repair protein. To date, only three studies seem to have been published on their potential use as biomarkers of therapy response. In contrast, the confirmation of MYC as the only one of the selected genes with rapid and transient change in expression in all tested conditions may point to a particular importance of myc in the therapeutic setting with fractionated radiation. Future investigations of vorinostat as possible Palbociclib radiosensitizing agent might be within a long-term curative radiotherapy protocol, for example as an additional component of neoadjuvant chemoradiotherapy for LARC. The confirmed presence of MYC expression in the intended radiotherapy target tissue in LARC patients encourages future exploration of this proto-oncogene as a novel biomarker endpoint. The myc protein acts both as transcriptional activator and repressor, regulating a myriad of genes that collectively conduct cell cycle progression, apoptosis, angiogenesis, and genetic instability. Specifically, it has been suggested that myc activates DNA damage repair genes, and interestingly, that myc in hypoxic tumors acts synergistically with the transcription factor hypoxia-inducible factor type 1a, HIF-1a. Recent evidence indicates that HDAC inhibition suppresses HIF-1a activity. Consequently, mitigation of DNA damage repair capacity through suppression of myc/HIF-1a synergy in hypoxic tumors, typically being resistant to radiation, provides an appealing explanation for the radiosensitizing effect of HDAC inhibitors. However, conflicting data have been presented as to how HDAC inhibition may influence the myc protein itself. Whereas inhibition of various HDAC enzymes has been shown to cause myc repression in a range of human cancer cell lines, which corresponds well with the data in the present study, specific nuclear induction of myc to mediate HDAC inhibitor-induced apoptosis in glioblastoma cell lines has also been demonstrated. Interestingly, in nasopharyngeal carcinoma cells that were resistant to radiation, myc was found to be essential through the transcriptional activation of cell cycle checkpoint kinases, which are signaling factors implicated in DNA damage repair, thereby facilitating tumor cell survival following radiation exposure. On the contrary, although radiosensitization was conferred by HDAC inhibition both in hypoxic and normoxic hepatocellular carcinoma cells, a lower level of myc expression was associated with the hypoxic and more radioresistant condition. Of particular note, in the present study, the vorinostat-induced repression of MYC was found both in study patients’ PBMC, clearly representing normoxic tissue, and experimental tumors that also were tested under normoxic conditions. In conclusion, integral in the PRAVO study design was the collection of non-irradiated surrogate tissue for the identification of biomarker of vorinostat activity to reflect the timing of administration and also suggest the mechanism of action of the HDAC inhibitor. This objective was achieved by gene expression array analysis of study patients’ PBMC and as a consequence, the identification of genes that from experimental models are known to be implicated in biological processes and pathways governed by HDAC inhibitors.

Leave a Reply