Lipolytic enzyme catalyzes reactions on a lipid substrate including phospholipids and other hydrophobic molecules, to hydrolyze or esterify a bond. Here lipase exhibits antibacterial activity by acting both on the lipopolysaccharide of Gram negative cell wall as well as the esters of exopolysaccharide present in the biofilm. It is reported that ctivity of lipase increases when it is placed at the hydrophilic/hydrophobic interface. Lipase exists in two main forms, open and closed. In aqueous medium, the lid or flap remains closed making it inactive, while it remains open in the presence of natural substrates including oil, converting it to an active form, known as interfacial activation. Immobilization on a support would give it a dispersed open form, cleaving this lid. Moreover, by changing the support morphology and hydrophobicity, it is possible to yield an open form which is highly active in any substrate. Since biofilm is formed at the interface, employing an interfacial enzyme such as lipase fulfills the requirement of the prevention of the former. The multipoint covalent immobilization of an enzyme inside a porous support may have several protective effects on the structure of the former. When the enzyme is present inside the pore, it remains stable and active in harsh environmental conditions. Also, LB immobilization creates stable film on porous surfaces. LIP surface is relatively more hydrophilic and smooth than the UP surface thereby preventing the attachment of hydrophobic organisms including E.coli. LIP exhibits slimicidal activity as evidenced by the reduction in the carbohydrate. It has been estimated that biofilm cells are up to 1,000 times more resistant to most of the antimicrobial agents than planktonic cells and, 80% of all bacterial infections are biofilm related. So the antibiofilm property of the lipase could help in preventing the formation of such a matrix. Outer membrane of the Gram negative bacterial cell is a lipid bilayer that forms a continuous barrier around it. Presence of lipopolysaccharide layer prevents the permeabilization of antibacterial within the bacterial cell. Lipases are esterases capable of hydrolyzing any ester bond. They act on the lipoprotein, lipopolysaccharide and phospholipids which surrounds the peptidoglycan layer leading to the hydrolysis of the lipid bilayer. The lipopolysaccharide complex is an endotoxin present on the outer membrane of the cell wall and this toxicity leads to a wide spectrum of nonspecific pathophysiological reactions including fever, changes in white blood cell counts, disseminated intravascular coagulation, hypotension, shock and death. When lipase acts on this lipid A, the chances of infection is minimized. In most of the Gram positive bacteria, lipoteichoic acids are present and the lipid tail present here plays a major role in the bacterial attachment. There is a possibility for the lipase to act on this lipid tail thereby preventing its adherence to a surface.
Lack of stability of protein mole protein stabilized silver nanoparticles
Leave a reply