Observed in the laboratory bioassays that the proportions dying were considerably

Higher than the proportions that visibly contained dye, particularly for the chlorfenapyr and tolfenpyrad treatments. Either the mosquitoes were dying after tarsal contact with the ATSB surfaces or the dye is an imperfect indicator of mosquitoes that have ingested sufficient volumes of insecticide to induce mortality. Whilst chlorfenapyr is effective as a contact insecticide, tolfenpyrad is relatively inactive by tarsal contact, even at application rates as high as 1g/m2 and an exposure time of 10 minutes. Boric acid acts mainly as a stomach poison and has very low contact toxicity, so it seems unlikely that much of the insecticidal activity observed in the feeding bioassays was due to contact toxicity. Many mosquitoes that were observed feeding on the ATSB in the cage test and died shortly afterwards did not show visible dye in their abdomens. It seems that the dye assay lacks sensitivity and a high proportion of mosquitoes were dead after ingesting small volumes of ATSB undetectable by eye through the insect abdominal wall. A more sensitive assay might make use of radiolabel or other tracer chemicals. Significantly higher proportions of mosquitoes died in the experimental huts containing ATSB treatments than in the control hut. Although the overall proportion of An. arabiensis females killed did not reach 50%, the level of mortality observed is still considerable and is not unusual for this species in huts. For example, hut trials of pyrethroid-treated bed nets against An. arabiensis rarely exceed 50% mortality in this area. ATSB were not tested in the absence of mosquito nets. It is doubtful whether host-seeking mosquitoes would be diverted from blood feeding to ATSB stations were it not for the barrier of an ITN or LLIN. It seems unlikely that indoor ATSB would provide protection in the absence of a net but this remains to be demonstrated. It is more likely that mosquitoes become diverted after expending time and Saikosaponin-B2 energy trying to reach the host through the net. The combination of ATSB plus LLIN is a practical and conceptually sound way to control vector borne disease. As with other forms of indoor vector control, such as indoor residual spraying, there will be multiple opportunities to kill the mosquito after each gonotrophic cycle when it Tubuloside-A returns to the house to feed, which will have the cumulative effect of reducing the lifespan of mosquito population, an essential factor in malaria transmission control. The combination of ATSB and LLIN also has potential as a new tool for insecticide resistance management. One propounded method of resistance management is the simultaneous delivery of unrelated classes of insecticides either as mixtures on the same net or as LLIN and IRS in the same household, but both approaches have been a challenge owing to the limited number of insecticide classes which can be used for treated nets or IRS treatments. The potential of ATSB to deliver classes of insecticide completely new to malaria control makes it ideal for controlling pyrethroid-resistant mosquitoes that survive initial contact with LLINs. An ATSB station should be a far cheaper and more targeted means of delivering insecticide than the application of insecticide to all wall surfaces as is required by IRS. The supply of safe and effective contact insecticides for use in public health is diminishing and the development of new residual insecticides just for malaria control is uneconomic for pesticide innovators. The ATSB approach provides a route for delivering modern insecticides developed through the more lucrative agricultural pipeline as crop protectants against chewing pests – to the public health sector as control agents of disease vectors. Arginine vasopressin plays a central role in urine concentration and dilution by the kidney.

Leave a Reply